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MOTION OF A CYLINDRICAL NET WITH A MASS AT THE END
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Abstract. The motion of a semi-infinite cylindrical net with a mass at one end is examined. The cylindrical

net, with a mass at one end, is initially stretched. Addressing the problem of wave propagation in deformable

filament systems, accounting for significant deviations from their original rectilinear shape, presents considerable

mathematical complexity, as the equations of motion constitute a system of nonlinear partial differential equations.

The solution, derived using characteristic equations, reveals the occurrence of traveling waves. This solution is

constructed by satisfying conditions at the point of contact between the net and the load. The results are presented

in the form of graphs and tables.
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1 Introduction

Net systems are utilized in various fields of modern technology, including aviation, fishing, and
construction. And these systems are subjected to the effects of intensive short-term loads.

The equation of net motion was first written down in Rakhmatulin (1947). Based on the
theory of H.A. Rakhmatullin the equations of motion of the net were obtained.

In Agalarov et al. (2019), a study on the unloading wave in a cylindrical mesh of nonlinear
elastic fibers was conducted. Various shapes of waves propagating in the net were investigated.
The distribution of constant deformation along the characteristics is determined based on the
velocity distribution at the boundary.

In Rustamova (2019), unloading waves in a cylindrical net of nonlinear elastic fibers were
examined. An attempt was made to address the problem of continuous waves, considering
multiple options for wave propagation in cylindrical nets.

A study on the flat form of nets was conducted in Agalarov & Rustamova (1998). In Agalarov
& Efendiev (1988), a motion of a continuous model network is investigated under a transverse
impact caused by a point load and by a rigid cone. The nonlinear differential equations obtained
are solved analytically and with the finite difference method. The network consists of two sets
of flexible filaments, the elements of which are fixed at the intersection points. The equations,
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describing the front of the plane waves, are derived, and solved for two cases: the net a) without
b)with prestressing before shock. The results confirm the theoretical solutions.

Articles Seyfullayev & Rustamova (Gulieva) (2000); Rustamova (Gulieva) (2002); Agalarov
& Rustamova (2002); Agalarov et al. (2022) focus on the investigation of nets in a rectangular
Cartesian coordinate system. Both non-one-dimensional dynamic problems and net equilibrium
were examined. To study wave propagation, the equations of motion for the net are provided in
both rectangular Cartesian coordinates and natural coordinates.

In Eremeev (2018), a continuum model was proposed for a specific class of elastic shells
undergoing finite deformations. This model utilizes the equations from the six-parametric the-
ory of shells. Within this framework, the shell’s kinematics is described using six kinematically
independent scalar degrees of freedom, including displacement and rotation fields. This charac-
teristic resembles the Cossera continuum, leading to the model being referred to as the theory
of micropolar shells.

The work Azarov (2018), which is a review, focuses on the problem of designing mesh com-
posite structures extensively utilized in domestic rocket and space technology. It discusses
the design and technological concepts, methods of design, and primary applications of mesh
aerospace structures. The results achieved in this field by the scientific school of Academician
V.V.Vasiliev are highlighted.

The work Vasiliev (2020) explores mesh cylindrical shells fabricated from modern composite
materials using the automatic continuous winding method, known for their high degree of weight
efficiency and extensive utilization in aerospace engineering. It addresses the optimal design
problem of these shells, focusing on minimizing mass while adhering to strength and stability
constraints. By employing a method that minimizes safety factors for potential forms of failure,
an analytical solution is derived to determine the optimal design parameters of the composite
mesh shell.

In recent years, precise equations describing the motion of a deformable thread under large
deviations have garnered significant attention. This interest is partly driven by the technical
applications of the physical phenomena elucidated by these equations. For instance, Kerimov
(1960)addressed the transverse impact problem using exact solutions of the simple wave type,
demonstrating that these equations furnish a fundamental theoretical framework for conducting
experimental studies on material behavior under substantial dynamic deformations and high
strain rates.

In Lopatin & Khakhlenkova (2018), a design for the connecting compartment of a spacecraft
(adapter) was proposed. It consists of two mesh composite conical shells and a three-layer
load-bearing panel, intended to accommodate three spacecraft. A finite element model of the
adapter has been developed, and a program generating it has been created. An analysis was
conducted on the influence of the parameters of the three-layer panel and the parameters of the
mesh structure of the shells on the main frequency of transverse vibrations. A set of parameters
has been determined to ensure a given oscillation frequency.

2 General equations of motion of the net

In practice, there may be a stretched cylindrical net with a load at one end that is initially
motionless. Here, the motion of such a cylindrical net with a mass at one end is investigated.

Suppose that the cylindrical net with a mass at the end is in a stretched state. At a certain
point in time, the load is released, and both the load and the net begin to move. Waves arise
within the net, and it is necessary to determine their intensity. It is assumed that the net
maintains its initial cylindrical shape, which is feasible with certain supports. Such pipes are
used, in particular, when drilling and flushing wells. In practice, these phenomena can occur in
flexible pipelines.

In Figure 1, the components are labeled as follows: 1 – net, 2 – porous filler, 3 – mass.
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Figure 1. 1 – net, 2 – porous filler, 3 – mass.

The equation of motion of the net in space, constructed based on the theory of Rakhmatullin
H.A., takes into account the reaction of the supporting body and the geometric relations. This
form contrasts with that of (Rakhmatulin, 1947).

∂

∂s1
(σ1
−→τ1) +

∂

∂s2
(σ2
−→τ2) = 2ρ

∂2−→r
∂τ2

+ p−→n ,

(1 + e1)
−→τ1 =

∂−→r
∂s1

; (1 + e2)
−→τ2 =

∂−→r
∂s2

.

(1)

Here
⇀
r is the radius vector of the net particle, p is the reaction force of the support; e1, e2 are

relative elongations of the corresponding threads; s1, s2 are the Lagrangian coordinates of the
thread particles; σ1, σ2 are the conditional stresses, ρ is the mass of the net coming per unit
area in the initial state; τ1, τ2 are the unit vectors tangent to the threads;

⇀
n is the normal to

the surface of the base.

The following are taken as the basis of the cylindrical system: the unit vector ī is parallel
to the axis of the cylinder, j̄ is a unit vector tangent to the cross section of the cylinder, k̄ is a
unit vector perpendicular to the previous ones.

Then

τ̄1 = cos γ1 ī+ sin γ1 j̄; τ̄2 = cos γ2 ī+ sin γ2 j̄,

where γ1,2 are the thread angles formed with the axis of the cylinder.

Derivatives

∂τ̄1
∂s1

= cos γ1
∂ī

∂s1
+ ī

∂ (cos γ1 )

∂s1
+ sin γ1

∂j̄

∂s1
+ j̄

∂ (sin γ1 )

∂s1
,

∂τ̄2
∂s2

= cos γ2
∂ī

∂s2
+ ī

∂ (cos γ2 )

∂s2
+ sin γ2

∂j̄

∂s2
+ j̄

∂ (sin γ2 )

∂s2
,

or considering

∂ī

∂s1
=

∂ī

∂s2
= 0;

∂j̄

∂s1
= −sin γ1

r
κ̄;

∂j̄

∂s2
= −sin γ2

r
κ̄.
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It follows that:
∂τ̄1
∂s1

=
∂ (cosγ1)

∂s1
ī− (sin γ1)

2

r
κ̄+

∂ (sin γ1)

∂s1
j̄,

∂τ̄2
∂s2

=
∂ (cosγ2)

∂s2
ī− (sin γ2)

2

r
κ̄+

∂ (sin γ2)

∂s2
j̄.

(2)

Also considering −→r = x
−→
i + r−→κ then,

∂−→r
∂t

=
∂x

∂t

−→
i + r

∂−→κ
∂t

=
∂x

∂t

−→
i + rω

−→
j ,

∂2r̄

∂t2
=
∂2x

∂t2
−→
i + r

∂ω

∂t

−→
j + rω

∂
−→
j

∂t
or

∂2r̄

∂t2
=
∂2x

∂t2
−→
i + rε

−→
j + rω2−→κ . (3)

x is the coordinate along the axis of the cylinder, ω is the angular velocity, ε is the angular
acceleration.

When substituting equations (2) and (3) into equation (1), the following is found:

∂

∂s1
(σ1cos γ1 ) +

∂

∂s2
(σ2cos γ2 ) = 2ρ

∂2r

∂t2
,

∂

∂s1
(σ1sin γ1 ) +

∂

∂s2
(σ2sin γ2 ) = rε, (4)

−σ2
r

sin2γ2 −
σ2
r

sin2γ2 = p+ 2ρrω2.

Next, the symmetrical arrangement of right and left fibers is considered. Then, equations
(4) are considered:

σ1=σ2=σ, γ1= −γ2=γ, ω= 0,ε = 0

will take the form:
∂

∂s
(σcosγ) = ρ

∂2r

∂t2
,

−2σ sin γ=p.

(5)

Let the derivative of the radius vector be defined by r with respect to s. Denoting:

−→r = x
−→
i + r

−→
k,

∂r̄

∂s
=
∂x

∂s
ī+

∂κ

∂s
r =

∂x

∂s
ī+

∂y

∂s
j̄,

y is the circular coordinate, where according to (1) and (2):

(1 + e1) cos γ1
−→
i + (1 + e1) sin γ1

−→
j =

∂r

∂s1
,

(1 + e2) cos γ2
−→
i + (1 + e2) sin γ2

−→
j =

∂r

∂s2
.

Taking into account the above, the following will be written:

(1 + e) cos γ =
∂x

∂s
, (6)

(1 + e) sin γ =
∂y

∂s
. (7)
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Since the set does not rotate, y is constant, then (over time)

∂ ((1 + e) sin γ )

∂t
= 0 or (1+e0) sin γ 0 = (1 + e) sin γ , (8)

where e0 and γ0 are the values of the parameters in the initial state.
Considering that the material of the set is linearly elastic, i.e. σ = E · ε. From (5) follows:

E

1 + e
·
(

1− e

1 + e

)
· ∂e
∂s

∂x

∂s
+

E · e
1 + e

· ∂
2x

∂s2
= ρ · ∂

2x

∂t2
. (9)

From equations (6) and (8), it is obtained that:

(1+e)2=

(
∂x

∂s

)2

+(1+e0)
2 sin2 γ0, (10)

where from (
∂x

∂s

)2

= (1 + e)2 − (1 + e0)
2 sin2 γ0, (11)

(1 + e)
∂e

∂s
=
∂x

∂s

∂2x

∂s
. (12)

Substituting (12) into (9),

E

1+e

(
1− e

1+e

)
1

1+e

(
∂x

∂s

)2∂2x

∂s2
+

E

1+e

∂2x

∂s2
=ρ

∂2x

∂t2

or

a0
2

1 + e
·

[ (
∂x
∂s

)2
(1 + e)2

+ e

]
∂2x

∂s2
=
∂2x

∂t2
, (13)

where a20 = E
ρ .

Substituting (11) into (13), the following is obtained:

a0
2 ·
[
1− (1 + e0)

2 sin2 γ0

(1 + e)3

]
∂2x

∂s2
=
∂2x

∂t2
(14)

or

a20

1− (1 + e0)
2sin2γ0(√(

∂x
∂s

)2
+ (1 + e0)

2sin2γ0

)3

 ∂2x∂s2 =
∂2x

∂t2
, (15)

where x is displacement, s is Lagrangian coordinates, t is time, e is fiber deformation. ∂x
∂s = xs

is axial deformation of the net, γ is angle of inclination of the fiber to the axis.
The last equation is a quasi-linear partial differential equation. The characteristics method

is used here.

x|s=∞ = 0.

The equation of motion of mass M has the following form.

M
∂2x

∂t2

∣∣∣∣
s=0

= f σcos γ |s=0, (16)

where σ is the stress caused by the tension of the fibers, f -is the cross-sectional area of the net.
In the initial state σ = σ0.
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3 Equations of characteristics

The equations of characteristics have the form:

ds = adt, ds = −adt. (17)

Characteristics conditions

dxt = a (xs) dxs, dxt = −a (xs) dxs,(
xt =

∂x

∂t
, xs =

∂x

∂s

)
.

(18)

a = a0

√√√√√√1− (1 + e0)
2sin2γ0(√(

∂x
∂s

)2
+ (1 + e0)

2sin2γ0

)3 . (19)

Consider the plane s− t (Fig.2). There are two points, A and B on the line s and at which
the deformation is equal to x0s, i.e. the characteristics have a slope a(x0s). As a result, this state
extends to ACB, i.e., to the region FOS. (i.e. in the resting state area FOS).

The state of the net in the tOF region is being considered.

Figure 2. Description of wave speed.

The equation of the negative characteristic is integrated from a point on the front L to K
in the tOF region

xt = −
xs∫
x0s

a(xs)dxs. (20)

Next, we differentiate (18) in the direction of the positive characteristic. Considering that
on the line OF xs = x0s is constant:

dxt = −adxs. (21)

From (20) and condition (18) for a positive characteristic, it follows:

dxt = 0, dxs = 0. (22)

In other words, positive characteristics are linear everywhere (xt = const, xs = const). Thus,
the solution in the area of FOt has the following form

xt = ϕ

(
t− s

a(xs)

)
; xs = ψ

(
t− s

a(xs)

)
. (23)
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4 Solving the equation of motion of a cylindrical net

Differentiating (20) with respect to t is obtained:

∂2x

∂t2
= −a∂xs

∂t
. (24)

By satisfying the condition at the boundary s=0, from equations (16) and (24) is defined:

−Ma
∂xs
∂t

= fσcos γ. (25)

Considering that the material of the set is linearly elastic, i.e., σ = Ee, where (Agalarov et
al., 2019):

e =

√(
∂x

∂s

)2

+ (1 + e0)
2sin2 (γ0) − 1,

cos γ =
1

1 + e

∂x

∂s
,

σ = E

√(∂x
∂s

)2

+ (1 + e0)
2sin2 (γ0) − 1

 . (26)

Substituting (26) into (25), the following is obtained (s = 0):

M
∂x2

∂t2
=

[
E

(√
ψ2 + (1 + e0)

2sin2 (γ0)

)
− 1

]
ψ√

ψ2 + (1 + e0)
2sin2 (γ0)

, (27)

where
(
ψ = ∂x

∂s

)
.

On a negative characteristic dxt = −adxs. Considering xt = ϕ
(
t− s

a

)
; xs = ψ

(
t− s

a

)
.(

ϕ = ∂x
∂t

)
, when s = 0, it is obtained.

dxt = dϕ, dxs = dψ,(
∂x

∂s
= xs,

∂x

∂t
= xt

)
,

or
∂ϕ

∂t
= −a∂ψ

∂t
.

Substituting in (27), the following is obtained.

−a∂ψ
∂t

=

[
fE

(√
ψ2 + (1 + e0)

2sin2 (γ0) − 1

)]
M
√
ψ2 + (1 + e0)

2sin2 (γ0)
ψ (28)

or taking into account (19):

−a0


√√√√√1− (1 + e0)

2sin2 (γ0)√(
ψ2 + (1 + e0)

2sin2 (γ0)
)3
 ∂ψ

∂t
=

[
fE

(√
ψ2 + (1 + e0)

2sin2 (γ0) − 1

)]
M
√
ψ2 + (1 + e0)

2sin2 (γ0)
ψ.

And accordingly

−a0M
fE

√
1− (1+e0)

2sin2(γ0)√
(ψ2+(1+e0)

2sin2(γ0) )
3(√

ψ2 + (1 + e0)
2sin2 (γ0) − 1

)√ψ2 + (1 + e0)
2sin2 (γ0)

∂ψ

ψ
= dt. (29)
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Integrating (29), the following is obtained

t = M

∫ xs

x0s

(1 + e) a

σ

∂ψ

ψ
. (30)

The integral (30) is approximated as a sum.

t0 = Φ(ψ0)∆ψ,

t1 = (Φ(ψ0) + Φ(ψ1)) ∆ψ,

t2 = (Φ(ψ0) + Φ(ψ1) + Φ(ψ2)) ∆ψ,

· · · · · · · · · · · · · · · · · · · · ·

tn = (Φ(ψ0) + Φ(ψ1) + · · ·+ Φ(ψn)) ∆ψn

or

Φ(ψ) = t

that is, the inverse dependence of ψ → t on the boundary. Since the positive characteristics are
rectilinear, it is possible to determine ψ in the entire area of motion. Here:

Φ (ψ) ==
a0M

fE

√
1− (1+e0)

2sin2(γ0)√
(ψ2+(1+e0)

2sin2(γ0) )
3(√

ψ2 + (1 + e0)
2sin2 (γ0) − 1

)√ψ2 + (1 + e0)
2sin2 (γ0)

1

ψ
.

By specifying the speed of movement of the end of the network at the boundary as a function
of time, it is possible to determine the deformation as a function of time at the end of the network
and throughout the SOt region in the same manner (Fig.2).

Examples are viewed (Fig.3 and Fig.4):

Figure 3. The distribution of constant deformation on the characteristics at the boundary.

(γ0 = π
4
, M = 10kq, E = 2 · 105MPa, a0 = 5000, ∆ψ = 0.01).

The graph ψ(t) = t is shown in Fig.4.
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Figure 4. ψ(t) = t.

5 Conclusion

The solution using characteristic equations shows the occurrence of traveling waves. The solution
is constructed by meeting the conditions at the point of contact between the net and the mass.

When the end of a stretched cylindrical net (pipe) with mass is released, it accelerates,
causing the end of the net to move at an increasing speed. Points at a distance exhibit a delayed
increase in velocity and lesser acceleration.

Table 1. Calculated values of the parameters utilized.

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10

0.925 0.915 0.905 0.895 0.885 0.875 0.865 0.855 0.845 0.835 0.825

e(ψ0) e (ψ1) e (ψ2) e (ψ3) e (ψ4) e (ψ5) e (ψ6) e (ψ7) e (ψ8) e (ψ9) e (ψ10)

0.169 0.161 0.153 0.145 0.137 0.129 0.122 0.114 0.106 0.099 0.01

t1 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
0.00102 0.00209 0,00322 0.00441 0.00568 0.00703 0.00847 0.01 0.012 0.014 0.016

Φ(ψ0) Φ(ψ1) Φ(ψ2) Φ(ψ3) Φ(ψ4) Φ(ψ5) Φ(ψ6) Φ(ψ7) Φ(ψ8) Φ(ψ9) Φ(ψ10)

0.102 0.107 0.113 0.119 0.127 0.135 0.144 0.154 0.166 0.18 0.20
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